

الامتحان الوطني الموحد للبكالوريا الدورة العادية 2024 - الموضوع -

المملكة المغربية وزارة التربية المعابية المعابي

 المركز الوطني للتقويم والامتحانات

3h	مدة الإنجاز	الرياضيات	المادة
7	المعامل	مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية (خيار فرنسية)	الشعبة المسلك

INSTRUCTIONS GENERALES

- ✓ L'utilisation de la calculatrice non programmable est autorisée;
- ✓ Le candidat peut traiter les exercices de l'épreuve suivant l'ordre qui lui convient ;
- √ L'utilisation de la couleur rouge lors de la rédaction des solutions est à éviter.

COMPOSANTES DU SUJET

L'épreuve est composée de quatre exercices et un problème, indépendants entre eux et répartis suivant les domaines comme suit :

Exercice 1	Suites numériques	3 points
Exercice 2	Géométrie dans l'espace	3 points
Exercice 3	Nombres complexes	4 points
Exercice 4	Calcul des probabilités	2 points
Problème	Etude de fonctions numériques et calcul intégral	8 points

- \checkmark On désigne par \overline{z} le conjugué du nombre complexe z et par |z| son module
- ✓ In désigne la fonction logarithme népérien

0.5

0.5

NS 22F

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2024 - الموضوع - مادة: الرياضيات- مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية (خيار فرنسية)

Exercice 1 (3 points):

On considère la suite (u_n) définie par : $u_0 = 4$ et $u_{n+1} = \frac{4u_n - 2}{1 + u_n}$, pour tout entier naturel n

- 0.25 1) a) Vérifier que $u_{n+1} = 4 \frac{6}{1 + u_n}$, pour tout entier naturel n
- 0.5 b) Montrer par récurrence que $2 \le u_n \le 4$, pour tout entier naturel n
- 0.25 2) a) Montrer que $u_{n+1} u_n = \frac{(u_n 1)(2 u_n)}{1 + u_n}$, pour tout entier naturel n
- 0.5 b) Montrer que la suite (u_n) est décroissante et en déduire que (u_n) est convergente.
 - 3) Soit (v_n) la suite numérique définie par $v_n = \frac{2 u_n}{1 u_n}$, pour tout entier naturel n
- 0.5 a) Montrer que (v_n) est une suite géométrique de raison $\frac{2}{3}$
- b) Montrer que $u_n = 1 + \frac{1}{1 \left(\frac{2}{3}\right)^{n+1}}$, pour tout entier naturel n
 - c) Calculer la limite de la suite (u_n)

Exercice 2 (3 points):

Dans l'espace rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$, on considère les deux points

A(-1,0,-1) et B(1,2,-1), le plan (P) passant par A et de vecteur normal $\vec{n}(2,-2,1)$ et

la sphère (S) de centre $\Omega(2, -1, 0)$ et de rayon 5

- 0.25 | 1) Montrer que 2x 2y + z + 3 = 0 est une équation cartésienne du plan (P)
- 0.25 2) Déterminer une équation cartésienne de la sphère (S)
- 0.5 3) a) Vérifier que la distance du point Ω au plan (P) est $d(\Omega, (P)) = 3$
- b) En déduire que le plan (P) coupe la sphère (S) suivant un cercle (Γ) de rayon à déterminer.
- 0.5 de la droite (Δ) passant par Ω et perpendiculaire au plan (P)
 - b) Montrer que le point H(0,1,-1) est le centre du cercle (Γ)
- 0.5 c) Montrer que la droite (Δ) est une médiatrice du segment [AB]

Exercice 3 (4 points):

Dans le plan complexe rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points

A et B d'affixes respectives $a = \sqrt{3}(1-i)$ et $b = 2 + \sqrt{3} + i$

0.5 | 1) Vérifier que
$$|a| = \sqrt{6}$$
 et que $\arg(a) = \frac{-\pi}{4} [2\pi]$

0.75 2) a) Montrer que
$$\frac{b}{a} = \frac{3+\sqrt{3}}{6} + \left(\frac{1+\sqrt{3}}{2}\right)i$$
 puis vérifier que $\frac{b}{a} = \frac{3+\sqrt{3}}{3}e^{i\frac{\pi}{3}}$

- 0.75 | b) En déduire une forme trigonométrique du complexe b puis vérifier que b^{24} est un nombre réel.
 - 3) Soit R la rotation de centre O et d'angle $\frac{\pi}{6}$, qui transforme chaque point M du plan d'affixe z en un point M' d'affixe z'. On pose R(B) = B', R(A) = A' et R(A') = A''
- 0.5 a) Vérifier que $z' = \frac{1}{2} \left(\sqrt{3} + i \right) z$ et que $\arg(a') = \frac{-\pi}{12} \left[2\pi \right]$ où a' est l'affixe du point A'
- b) Montrer que l'affixe du point A'' est $a'' = \sqrt{6}e^{i\frac{\pi}{12}}$ et en déduire que les points O, A'' et B sont alignés.
- 0.5 c) Montrer que b', l'affixe du point B', vérifie $b' = \left(\frac{3+\sqrt{3}}{3}\right) \bar{a}$
- 0.5 d) En déduire que le triangle OAB' est rectangle en O

Exercice 4 (2 points):

Une urne contient sept boules : quatre boules portant le numéro1, deux boules portant le numéro 2 et une boule portant le numéro 3. Toutes les boules sont indiscernables au toucher.

On tire simultanément au hasard deux boules de cette urne.

- 0.5 1) Montrer que $p(A) = \frac{1}{3}$, où A est l'évènement « les deux boules tirées portent le même numéro »
- 0.5 2) Montrer que $p(B) = \frac{5}{21}$, où B est l'évènement « La somme des numéros des boules tirées est 4 »
- 0.5 3) Calculer $p(A \cap B)$
- 0.5 4) Les événements A et B sont -ils indépendants ? Justifier.

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2024 - الموضوع - مادة: الرياضيات - مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية (خيار فرنسية)

Problème (8 points):

Partie I : On considère les deux fonctions u et v définies sur \mathbb{R} par : $u(x) = e^x$ et v(x) = x

- 0.5 1) Tracer dans un même repère orthonormé les courbes (C_u) et (C_v) des fonctions u et v
- 0.25 2) Justifier graphiquement que $e^x x > 0$ pour tout x de \mathbb{R}
- 0.5 3) Calculer l'aire de la partie du plan délimitée par la courbe (C_u) , la courbe (C_v) et les droites d'équations x = 0 et x = 1

Partie II : On considère la fonction numérique f définie par $f(x) = x + 1 - \ln(e^x - x)$.

- 0.25 1) a) Vérifier que f est définie sur \mathbb{R}
- 0.5 b) Montrer que pour tout $x \in \mathbb{R}$, $f(x) = 1 \ln(1 xe^{-x})$
- 0.5 c) En déduire que $\lim_{x \to +\infty} f(x) = 1$, puis interpréter géométriquement ce résultat.
- 0.25 ||2) a) Calculer $\lim_{x \to -\infty} f(x)$

0.5

0.5

0.5

- 0.5 b) Vérifier que pour tout x < 0, $f(x) = x + 1 \ln(-x) \ln\left(1 \frac{1}{xe^{-x}}\right)$
- 0.75 c) Calculer $\lim_{x \to -\infty} \frac{f(x)}{x}$ puis déduire que la courbe (C_f) admet une branche parabolique de direction la droite d'équation y = x au voisinage de $-\infty$
- 0.5 3) a) Montrer que pour tout $x \in \mathbb{R}$: $f'(x) = \frac{1-x}{e^x x}$
- 0.5 b) Etudier le signe de la fonction dérivée de f , puis déduire le tableau de variations de f sur $\mathbb R$
- 0.75 c) Montrer que l'équation f(x) = 0 admet une solution unique dans l'intervalle]-1,0[
 - 4) La courbe (C_f) ci-contre est la représentation graphique de f dans un repère orthonormé.
 - a) Justifier graphiquement que l'équation f(x) = x admet deux solutions α et β .
 - b) Montrer que : $e^{\alpha} e^{\beta} = \alpha \beta$
 - 5) Soit *g* la restriction de la fonction *f* sur l'intervalle $I =]-\infty,1]$
 - a) Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J que l'on déterminera. (Il n'est pas demandé de déterminer $g^{-1}(x)$)
- 0.75 b) Vérifier que g^{-1} est dérivable en 1 et calculer $(g^{-1})'(1)$

